- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, James Z. (3)
-
Wu, Chenyan (3)
-
Shafir, Tal (2)
-
Tsachor, Rachelle (2)
-
Adams, Reginald B. (1)
-
Chen, Yukun (1)
-
Davaasuren, Dolzodmaa (1)
-
Deng, Zhuo (1)
-
Hanzra, Bikramjot (1)
-
Kuo, Cheng-hao (1)
-
Liu, Bilan (1)
-
Luo, Jiajia (1)
-
Newman, Michelle G. (1)
-
Su, Che-Chun (1)
-
Zhao, Sicheng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bodily expressed emotion understanding (BEEU) aims to automatically recognize human emotional expressions from body movements. Psychological research has demonstrated that people often move using specific motor elements to convey emotions. This work takes three steps to integrate human motor elements to study BEEU. First, we introduce BoME (body motor elements), a highly precise dataset for human motor elements. Second, we apply baseline models to estimate these elements on BoME, showing that deep learning methods are capable of learning effective representations of human movement. Finally, we propose a dual-source solution to enhance the BEEU model with the BoME dataset, which trains with both motor element and emotion labels and simultaneously produces predictions for both. Through experiments on the BoLD in-the-wild emotion understanding benchmark, we showcase the significant benefit of our approach. These results may inspire further research utilizing human motor elements for emotion understanding and mental health analysis.more » « less
-
Wang, James Z.; Zhao, Sicheng; Wu, Chenyan; Adams, Reginald B.; Newman, Michelle G.; Shafir, Tal; Tsachor, Rachelle (, Proceedings of the IEEE)
-
Wu, Chenyan; Chen, Yukun; Luo, Jiajia; Su, Che-Chun; Hanzra, Bikramjot; Deng, Zhuo; Liu, Bilan; Wang, James Z.; Kuo, Cheng-hao (, IEEE Conference on Computer Vision and Pattern Recognition)Body orientation estimation provides crucial visual cues in many applications, including robotics and autonomous driving. It is particularly desirable when 3-D pose estimation is difficult to infer due to poor image resolution, occlusion, or indistinguishable body parts. We present COCO-MEBOW (Monocular Estimation of Body Orientation in the Wild), a new large-scale dataset for orientation estimation from a single in-the-wild image. The body-orientation labels for around 130K human bodies within 55K images from the COCO dataset have been collected using an efficient and high-precision annotation pipeline. We also validated the benefits of the dataset. First, we show that our dataset can substantially improve the performance and the robustness of a human body orientation estimation model, the development of which was previously limited by the scale and diversity of the available training data. Additionally, we present a novel triple-source solution for 3-D human pose estimation, where 3-D pose labels, 2-D pose labels, and our body-orientation labels are all used in joint training. Our model significantly outperforms state-of-the-art dual-source solutions for monocular 3-D human pose estimation, where training only uses 3-D pose labels and 2-D pose labels. This substantiates an important advantage of MEBOW for 3-D human pose estimation, which is particularly appealing because the per-instance labeling cost for body orientations is far less than that for 3-D poses. The work demonstrates high potential of MEBOW in addressing real-world challenges involving understanding human behaviors. Further information of this work is available at https://chenyanwu.github.io/MEBOW/ .more » « less
An official website of the United States government
